{ "id": "1806.02456", "version": "v1", "published": "2018-06-06T23:15:10.000Z", "updated": "2018-06-06T23:15:10.000Z", "title": "A local estimate for the total variation flow of curves", "authors": [ "Lorenzo Giacomelli", "Michał Łasica" ], "comment": "7 pages", "categories": [ "math.AP" ], "abstract": "If $\\boldsymbol u \\colon [0, \\infty[\\times I \\to \\mathbb R^n$ is the solution to the total variation flow on an interval $I$ with initial datum $\\boldsymbol u_0 \\in BV(I, \\mathbb R^n)$, then $|\\boldsymbol u_x(t, \\cdot)| \\leq |\\boldsymbol u_{0,x}|$ in the sense of measures on $I$ for $t>0$.", "revisions": [ { "version": "v1", "updated": "2018-06-06T23:15:10.000Z" } ], "analyses": { "subjects": [ "35A23", "35K51", "35K92" ], "keywords": [ "total variation flow", "local estimate", "initial datum" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }