arXiv:1805.11580 [math.NA]AbstractReferencesReviewsResources
Algebraic Linearizations of Matrix Polynomials
Eunice Y. S. Chan, Robert M. Corless, Laureano Gonzalez-Vega, J. Rafael Sendra, Juana Sendra
Published 2018-05-29Version 1
We show how to construct linearizations of matrix polynomials $z\mathbf{a}(z)\mathbf{d}_0 + \mathbf{c}_0$, $\mathbf{a}(z)\mathbf{b}(z)$, $\mathbf{a}(z) + \mathbf{b}(z)$ (when $\mathrm{deg}\left(\mathbf{b}(z)\right) < \mathrm{deg}\left(\mathbf{a}(z)\right)$), and $z\mathbf{a}(z)\mathbf{d}_0\mathbf{b}(z) + \mathbf{c_0}$ from linearizations of the component parts, $\mathbf{a}(z)$ and $\mathbf{b}(z)$. This allows the extension to matrix polynomials of a new companion matrix construction.
Comments: 35 pages, 3 figures
Categories: math.NA
Related articles: Most relevant | Search more
Locating the eigenvalues of matrix polynomials
arXiv:1409.5902 [math.NA] (Published 2014-09-20)
A Contribution to the Numerics of Polynomials and Matrix Polynomials
arXiv:1811.03227 [math.NA] (Published 2018-11-08)
On Wielandt-Mirsky's conjecture for matrix polynomials