{ "id": "1805.11580", "version": "v1", "published": "2018-05-29T16:55:49.000Z", "updated": "2018-05-29T16:55:49.000Z", "title": "Algebraic Linearizations of Matrix Polynomials", "authors": [ "Eunice Y. S. Chan", "Robert M. Corless", "Laureano Gonzalez-Vega", "J. Rafael Sendra", "Juana Sendra" ], "comment": "35 pages, 3 figures", "categories": [ "math.NA" ], "abstract": "We show how to construct linearizations of matrix polynomials $z\\mathbf{a}(z)\\mathbf{d}_0 + \\mathbf{c}_0$, $\\mathbf{a}(z)\\mathbf{b}(z)$, $\\mathbf{a}(z) + \\mathbf{b}(z)$ (when $\\mathrm{deg}\\left(\\mathbf{b}(z)\\right) < \\mathrm{deg}\\left(\\mathbf{a}(z)\\right)$), and $z\\mathbf{a}(z)\\mathbf{d}_0\\mathbf{b}(z) + \\mathbf{c_0}$ from linearizations of the component parts, $\\mathbf{a}(z)$ and $\\mathbf{b}(z)$. This allows the extension to matrix polynomials of a new companion matrix construction.", "revisions": [ { "version": "v1", "updated": "2018-05-29T16:55:49.000Z" } ], "analyses": { "subjects": [ "65F99", "15A22" ], "keywords": [ "matrix polynomials", "algebraic linearizations", "companion matrix construction", "component parts" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }