arXiv:1805.05888 [math.RT]AbstractReferencesReviewsResources
The $\ell$-modular local Langlands correspondence and local factors
Robert Kurinczuk, Nadir Matringe
Published 2018-05-15Version 1
Let $F$ be a non-archimedean local field of residual characteristic $p$, $\ell\neq p$ be a prime number, and $\mathrm{W}_F$ the Weil group of $F$. We classify the indecomposable $\mathrm{W}_F$-semisimple Deligne $\overline{\mathbb{F}_\ell}$-representations in terms of the irreducible $\overline{\mathbb{F}_\ell}$-representations of $\mathrm{W}_F$, and extend constructions of Artin-Deligne local factors to this setting. Finally, we define a variant of the $\ell$-modular local Langlands correspondence which satisfies a preservation of local factors statement for generic representations.
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:math/0504417 [math.RT] (Published 2005-04-20)
On Bernstein's presentation of Iwahori-Hecke algebras and representations of split reductive groups over non-Archimedean local fields
arXiv:0812.4636 [math.RT] (Published 2008-12-26)
Character Sheaves of Algebraic Groups Defined over Non-Archimedean Local Fields
arXiv:math/0403240 [math.RT] (Published 2004-03-15)
Coefficient systems and supersingular representations of $GL_2(F)$