{ "id": "1805.05888", "version": "v1", "published": "2018-05-15T16:22:44.000Z", "updated": "2018-05-15T16:22:44.000Z", "title": "The $\\ell$-modular local Langlands correspondence and local factors", "authors": [ "Robert Kurinczuk", "Nadir Matringe" ], "categories": [ "math.RT" ], "abstract": "Let $F$ be a non-archimedean local field of residual characteristic $p$, $\\ell\\neq p$ be a prime number, and $\\mathrm{W}_F$ the Weil group of $F$. We classify the indecomposable $\\mathrm{W}_F$-semisimple Deligne $\\overline{\\mathbb{F}_\\ell}$-representations in terms of the irreducible $\\overline{\\mathbb{F}_\\ell}$-representations of $\\mathrm{W}_F$, and extend constructions of Artin-Deligne local factors to this setting. Finally, we define a variant of the $\\ell$-modular local Langlands correspondence which satisfies a preservation of local factors statement for generic representations.", "revisions": [ { "version": "v1", "updated": "2018-05-15T16:22:44.000Z" } ], "analyses": { "subjects": [ "22E50", "11F70" ], "keywords": [ "modular local langlands correspondence", "non-archimedean local field", "local factors statement", "artin-deligne local factors", "residual characteristic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }