arXiv:1805.04892 [math.NT]AbstractReferencesReviewsResources
Subconvexity bound for $GL(2)$ L-functions: \lowercase{t}-aspect
Ratnadeep Acharya, Sumit Kumar, Gopal Maiti, Saurabh Kumar Singh
Published 2018-05-13Version 1
Let $f $ be a holomorphic Hecke eigenform or a Hecke-Maass cusp form for the full modular group $ SL(2, \mathbb{Z})$. In this paper we shall use circle method to prove the Weyl exponent for $GL(2)$ $L$-functions. We shall prove that \[ L \left( \frac{1}{2} + it, f \right) \ll_{f, \epsilon} \left( 2 + |t|\right)^{1/3 + \epsilon}, \] for any $\epsilon > 0.$
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1604.08000 [math.NT] (Published 2016-04-27)
Twists of $GL(3)$ $L$-functions
The Low Lying Zeros of a GL(4) and a GL(6) family of L-functions
Hecke operators on period functions for the full modular group