arXiv Analytics

Sign in

arXiv:1805.03109 [math.RT]AbstractReferencesReviewsResources

On the SO(n+3) to SO(n) branching multiplicity space

Emilio A. Lauret, Fiorela Rossi Bertone

Published 2018-05-08Version 1

We study the decomposition as an $\textrm{SO}(3)$-module of the multiplicity space corresponding to the branching from $\textrm{SO}(n+3)$ to $\textrm{SO}(n)$. Here, $\textrm{SO}(n)$ (resp.\ $\textrm{SO}(3)$) is considered embedded in $\textrm{SO}(n+3)$ in the upper left-hand block (resp.\ lower right-hand block). We show that when the highest weight of the irreducible representation of $\textrm{SO}(n)$ interlaces the highest weight of the irreducible representation of $\textrm{SO}(n+3)$, then the multiplicity space decomposes as a tensor product of $\lfloor (n+2)/2\rfloor$ reducible representations of $\textrm{SO}(3)$.

Related articles: Most relevant | Search more
arXiv:1712.05423 [math.RT] (Published 2017-12-14)
A simple counting argument of the irreducible representations of SU(N) on mixed product spaces
arXiv:1805.00384 [math.RT] (Published 2018-05-01)
On classical tensor categories attached to the irreducible representations of the General Linear Supergroups $GL(n\vert n)$
arXiv:2412.01742 [math.RT] (Published 2024-12-02)
Character of Irreducible Representations Restricted to Finite Order Elements -- An Asymptotic Formula