arXiv:1805.00384 [math.RT]AbstractReferencesReviewsResources
On classical tensor categories attached to the irreducible representations of the General Linear Supergroups $GL(n\vert n)$
Thorsten Heidersdorf, Rainer Weissauer
Published 2018-05-01Version 1
We study the quotient of $\mathcal{T}_n = Rep(GL(n|n))$ by the tensor ideal of negligible morphisms. If we consider the full subcategory $\mathcal{T}_n^+$ of $\mathcal{T}_n$ of indecomposable summands in iterated tensor products of irreducible representations up to parity shifts, its quotient is a semisimple tannakian category $Rep(H_n)$ where $H_n$ is a pro-reductive algebraic group. We determine the connected derived subgroup $G_n \subset H_n$ and the groups $G_{\lambda} = (H_{\lambda})_{der}^0$ corresponding to the tannakian subcategory in $Rep(H_n)$ generated by an irreducible representation $L(\lambda)$. This gives structural information about the tensor category $Rep(GL(n|n))$, including the decomposition law of a tensor product of irreducible representations up to summands of superdimension zero. Some results are conditional on a hypothesis on $2$-torsion in $\pi_0(H_n)$.