arXiv Analytics

Sign in

arXiv:1805.01067 [math.AG]AbstractReferencesReviewsResources

A remark on the example of Colliot-Thélène and Voisin

Fumiaki Suzuki

Published 2018-05-03Version 1

A classical question asks whether the Abel-Jacobi map $\psi^{i} \colon A^{i}(X)\rightarrow J^{i}_{a}(X)$ is universal among all regular homomorphisms. Meanwhile, Colliot-Th\'el\`ene and Voisin constructed a smooth projective $3$-fold $Y$ such that the Hodge conjecture is false for degree $4$ integral Hodge classes in a strong sense and $H^{i}(Y, \mathcal{O}_{Y}) = 0$ for all $i>0$. We prove that the Abel-Jacobi map $\psi^{3}\colon A^{3}(Y\times E)\rightarrow J^{3}_{a}(Y\times E)$ is not universal for some smooth elliptic curve $E$ if the generalized Bloch conjecture holds for $Y$.

Comments: 6 pages, comments are welcome
Categories: math.AG
Subjects: 14C25, 14C30, 14C35
Related articles: Most relevant | Search more
arXiv:math/0412279 [math.AG] (Published 2004-12-14)
On integral Hodge classes on uniruled or Calabi-Yau threefolds
arXiv:1005.1346 [math.AG] (Published 2010-05-08)
Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal
arXiv:1304.5288 [math.AG] (Published 2013-04-19)
The degree-2 Abel-Jacobi map for nodal curves - II