{ "id": "1805.01067", "version": "v1", "published": "2018-05-03T00:42:50.000Z", "updated": "2018-05-03T00:42:50.000Z", "title": "A remark on the example of Colliot-Thélène and Voisin", "authors": [ "Fumiaki Suzuki" ], "comment": "6 pages, comments are welcome", "categories": [ "math.AG" ], "abstract": "A classical question asks whether the Abel-Jacobi map $\\psi^{i} \\colon A^{i}(X)\\rightarrow J^{i}_{a}(X)$ is universal among all regular homomorphisms. Meanwhile, Colliot-Th\\'el\\`ene and Voisin constructed a smooth projective $3$-fold $Y$ such that the Hodge conjecture is false for degree $4$ integral Hodge classes in a strong sense and $H^{i}(Y, \\mathcal{O}_{Y}) = 0$ for all $i>0$. We prove that the Abel-Jacobi map $\\psi^{3}\\colon A^{3}(Y\\times E)\\rightarrow J^{3}_{a}(Y\\times E)$ is not universal for some smooth elliptic curve $E$ if the generalized Bloch conjecture holds for $Y$.", "revisions": [ { "version": "v1", "updated": "2018-05-03T00:42:50.000Z" } ], "analyses": { "subjects": [ "14C25", "14C30", "14C35" ], "keywords": [ "abel-jacobi map", "colliot-thélène", "integral hodge classes", "smooth elliptic curve", "generalized bloch conjecture holds" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }