arXiv Analytics

Sign in

arXiv:1805.00853 [math.PR]AbstractReferencesReviewsResources

Convergence of metric two-level measure spaces

Roland Meizis

Published 2018-05-02Version 1

In this article we extend the notion of metric measure spaces to so-called metric two-level measure spaces (m2m spaces): An m2m space $(X, r, \nu)$ is a Polish metric space $(X, r)$ equipped with a two-level measure $\nu \in \mathcal{M}_f(\mathcal{M}_f(X))$, i.e. a finite measure on the set of finite measures on $X$. We introduce a topology on the set of (equivalence classes of) m2m spaces induced by certain test functions (i.e. the initial topology with respect to these test functions) and show that this topology is Polish by providing a complete metric. The framework introduced in this article is motivated by possible applications in biology. It is well suited for modeling the random evolution of the genealogy of a population in a hierarchical system with two levels, for example, host-parasite systems or populations which are divided into colonies. As an example we apply our theory to construct a random m2m space modeling a two-level coalescent and its genealogy.

Related articles: Most relevant | Search more
arXiv:math/0310210 [math.PR] (Published 2003-10-15, updated 2006-02-09)
The harmonic explorer and its convergence to SLE(4)
arXiv:1205.2682 [math.PR] (Published 2012-05-11, updated 2012-10-05)
Convergence in total variation on Wiener chaos
arXiv:1103.1426 [math.PR] (Published 2011-03-08, updated 2011-11-01)
Convergence of random series and the rate of convergence of the strong law of large numbers in game-theoretic probability