arXiv Analytics

Sign in

arXiv:1103.1426 [math.PR]AbstractReferencesReviewsResources

Convergence of random series and the rate of convergence of the strong law of large numbers in game-theoretic probability

Kenshi Miyabe, Akimichi Takemura

Published 2011-03-08, updated 2011-11-01Version 4

We give a unified treatment of the convergence of random series and the rate of convergence of strong law of large numbers in the framework of game-theoretic probability of Shafer and Vovk (2001). We consider games with the quadratic hedge as well as more general weaker hedges. The latter corresponds to existence of an absolute moment of order smaller than two in the measure-theoretic framework. We prove some precise relations between the convergence of centered random series and the convergence of the series of prices of the hedges. When interpreted in measure-theoretic framework, these results characterize convergence of a martingale in terms of convergence of the series of conditional absolute moments. In order to prove these results we derive some fundamental results on deterministic strategies of Reality, who is a player in a protocol of game-theoretic probability. It is of particular interest, since Reality's strategies do not have any counterparts in measure-theoretic framework, ant yet they can be used to prove results, which can be interpreted in measure-theoretic framework.

Journal: Stochastic Processes and their Applications 122 (2012) 1-30
Categories: math.PR
Related articles: Most relevant | Search more
arXiv:math/0310210 [math.PR] (Published 2003-10-15, updated 2006-02-09)
The harmonic explorer and its convergence to SLE(4)
arXiv:1107.2543 [math.PR] (Published 2011-07-13, updated 2015-08-31)
Convergence in law for the branching random walk seen from its tip
arXiv:1205.2682 [math.PR] (Published 2012-05-11, updated 2012-10-05)
Convergence in total variation on Wiener chaos