arXiv Analytics

Sign in

arXiv:1803.07579 [math.AP]AbstractReferencesReviewsResources

Schrödinger-Maxwell systems on compact Riemannian manifolds

Csaba Farkas

Published 2018-03-20Version 1

In this paper we are focusing to the following Schr\"odinger-Maxwell system $(\mathcal{SM}_{\Psi(\lambda,\cdot)}^{e})$: \[ \begin{cases} -\Delta_{g}u+\beta(x)u+eu\phi=\Psi(\lambda,x)f(u) & \mathrm{in}\ M -\Delta_{g}\phi+\phi=qu^{2} & \mathrm{\mathrm{in}\ M} \end{cases} \] where $(M,g)$ is a 3-dimensional compact Riemannian manifold without boundary, $e,q>0$ are positive numbers, $f:\mathbb{R}\to\mathbb{R}$ is a continuous function, $\beta\in C^{\infty}(M)$ and $\Psi\in C^{\infty}(\mathbb{R}_{+}\times M)$ are positive functions. By various variational approaches, existence of multiple solutions of the problem $(\mathcal{SM}_{\Psi(\lambda,\cdot)}^{e})$ is established.

Related articles: Most relevant | Search more
arXiv:1901.01601 [math.AP] (Published 2019-01-06)
Multiple solutions of an elliptic Hardy-Sobolev equation with critical exponents on compact Riemannian manifolds
arXiv:1601.01959 [math.AP] (Published 2016-01-08)
Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact Riemannian manifolds
arXiv:2003.13050 [math.AP] (Published 2020-03-29)
Quasi-linear elliptic equations with data in $L^{1}$ on a compact Riemannian manifold