{ "id": "1803.07579", "version": "v1", "published": "2018-03-20T18:09:32.000Z", "updated": "2018-03-20T18:09:32.000Z", "title": "Schrödinger-Maxwell systems on compact Riemannian manifolds", "authors": [ "Csaba Farkas" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "In this paper we are focusing to the following Schr\\\"odinger-Maxwell system $(\\mathcal{SM}_{\\Psi(\\lambda,\\cdot)}^{e})$: \\[ \\begin{cases} -\\Delta_{g}u+\\beta(x)u+eu\\phi=\\Psi(\\lambda,x)f(u) & \\mathrm{in}\\ M -\\Delta_{g}\\phi+\\phi=qu^{2} & \\mathrm{\\mathrm{in}\\ M} \\end{cases} \\] where $(M,g)$ is a 3-dimensional compact Riemannian manifold without boundary, $e,q>0$ are positive numbers, $f:\\mathbb{R}\\to\\mathbb{R}$ is a continuous function, $\\beta\\in C^{\\infty}(M)$ and $\\Psi\\in C^{\\infty}(\\mathbb{R}_{+}\\times M)$ are positive functions. By various variational approaches, existence of multiple solutions of the problem $(\\mathcal{SM}_{\\Psi(\\lambda,\\cdot)}^{e})$ is established.", "revisions": [ { "version": "v1", "updated": "2018-03-20T18:09:32.000Z" } ], "analyses": { "keywords": [ "compact riemannian manifold", "schrödinger-maxwell systems", "variational approaches", "multiple solutions", "continuous function" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }