arXiv:1803.02467 [math.NT]AbstractReferencesReviewsResources
A q-analogue for Euler's $ζ(2k)=\dfrac{(-1)^{k+1}2^{2k}B_{2k}π^{2k}}{2(2k)!}$
Published 2018-03-06Version 1
We give a $q$-analogue of Euler's formula for $\zeta(2k)$ for $k\in\mathbb{Z}^+$. Our main results are stated in Theorems 3.1 and 3.2 below.
Categories: math.NT
Keywords: q-analogue, eulers formula
Related articles: Most relevant | Search more
arXiv:math/0502134 [math.NT] (Published 2005-02-07)
q-analogue of Euler-Barnes' numbers and polynomials
arXiv:1307.6752 [math.NT] (Published 2013-07-25)
On the q-analogue of Laplace transform
arXiv:1802.01473 [math.NT] (Published 2018-02-05)
A $q$-analogue of Euler's formula $ζ(2)=π^2/6$