{ "id": "1803.02467", "version": "v1", "published": "2018-03-06T23:11:52.000Z", "updated": "2018-03-06T23:11:52.000Z", "title": "A q-analogue for Euler's $ζ(2k)=\\dfrac{(-1)^{k+1}2^{2k}B_{2k}π^{2k}}{2(2k)!}$", "authors": [ "Ankush Goswami" ], "categories": [ "math.NT" ], "abstract": "We give a $q$-analogue of Euler's formula for $\\zeta(2k)$ for $k\\in\\mathbb{Z}^+$. Our main results are stated in Theorems 3.1 and 3.2 below.", "revisions": [ { "version": "v1", "updated": "2018-03-06T23:11:52.000Z" } ], "analyses": { "keywords": [ "q-analogue", "eulers formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }