arXiv:1803.00354 [math.PR]AbstractReferencesReviewsResources
Poisson cylinders in hyperbolic space
Erik I. Broman, Johan H. Tykesson
Published 2018-03-01Version 1
We consider the Poisson cylinder model in $d$-dimensional hyperbolic space. We show that in contrast to the Euclidean case, there is a phase transition in the connectivity of the collection of cylinders as the intensity parameter varies. We also show that for any non-trivial intensity, the diameter of the collection of cylinders is infinite.
Comments: 29 pages
Journal: Electronic Journal of Probability, Vol. 20 (2015), Paper 41
DOI: 10.1214/EJP.v20-3645
Categories: math.PR
Keywords: poisson cylinder model, dimensional hyperbolic space, intensity parameter varies, phase transition, collection
Tags: journal article
Related articles: Most relevant | Search more
The Random-Cluster Model
Phase transitions in layered systems
Luiz Renato Fontes, Domingos H. U. Marchetti, Immacolata Merola, Errico Presutti, Maria Eulalia Vares
Phase Transitions for the Groeth Rate of Linear Stochastic Evolutions