{ "id": "1803.00354", "version": "v1", "published": "2018-03-01T13:21:56.000Z", "updated": "2018-03-01T13:21:56.000Z", "title": "Poisson cylinders in hyperbolic space", "authors": [ "Erik I. Broman", "Johan H. Tykesson" ], "comment": "29 pages", "journal": "Electronic Journal of Probability, Vol. 20 (2015), Paper 41", "doi": "10.1214/EJP.v20-3645", "categories": [ "math.PR" ], "abstract": "We consider the Poisson cylinder model in $d$-dimensional hyperbolic space. We show that in contrast to the Euclidean case, there is a phase transition in the connectivity of the collection of cylinders as the intensity parameter varies. We also show that for any non-trivial intensity, the diameter of the collection of cylinders is infinite.", "revisions": [ { "version": "v1", "updated": "2018-03-01T13:21:56.000Z" } ], "analyses": { "subjects": [ "60K35", "82B43" ], "keywords": [ "poisson cylinder model", "dimensional hyperbolic space", "intensity parameter varies", "phase transition", "collection" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }