arXiv:1802.07482 [math.RT]AbstractReferencesReviewsResources
The BMR symmetrising trace conjecture for groups $G_4,\,G_5,\,G_6,\,G_7,\,G_8$
Christina Boura, Eirini Chavli, Maria Chlouveraki, Konstantinos Karvounis
Published 2018-02-21Version 1
We prove the BMR symmetrising trace conjecture for the exceptional complex reflection groups $G_4,\,G_5,\,G_6,\,G_7,\,G_8$ using a combination of algorithms programmed in different languages (C++, SAGE, GAP3, Mathematica). Our proof depends on the choice of a suitable basis for the generic Hecke algebra associated with each group.
Comments: 19 pages
Categories: math.RT
Related articles: Most relevant | Search more
Generic Hecke Algebras for Monomial Groups
Blocks and families for cyclotomic Hecke algebras
arXiv:1810.13370 [math.RT] (Published 2018-10-31)
The BMM symmetrising trace conjecture for the exceptional 2-reflection groups of rank 2