arXiv Analytics

Sign in

arXiv:1802.07482 [math.RT]AbstractReferencesReviewsResources

The BMR symmetrising trace conjecture for groups $G_4,\,G_5,\,G_6,\,G_7,\,G_8$

Christina Boura, Eirini Chavli, Maria Chlouveraki, Konstantinos Karvounis

Published 2018-02-21Version 1

We prove the BMR symmetrising trace conjecture for the exceptional complex reflection groups $G_4,\,G_5,\,G_6,\,G_7,\,G_8$ using a combination of algorithms programmed in different languages (C++, SAGE, GAP3, Mathematica). Our proof depends on the choice of a suitable basis for the generic Hecke algebra associated with each group.

Related articles: Most relevant | Search more
arXiv:math/0610159 [math.RT] (Published 2006-10-05, updated 2010-09-17)
Generic Hecke Algebras for Monomial Groups
arXiv:0807.1476 [math.RT] (Published 2008-07-09, updated 2011-07-18)
Blocks and families for cyclotomic Hecke algebras
arXiv:1810.13370 [math.RT] (Published 2018-10-31)
The BMM symmetrising trace conjecture for the exceptional 2-reflection groups of rank 2