{ "id": "1802.07482", "version": "v1", "published": "2018-02-21T09:43:12.000Z", "updated": "2018-02-21T09:43:12.000Z", "title": "The BMR symmetrising trace conjecture for groups $G_4,\\,G_5,\\,G_6,\\,G_7,\\,G_8$", "authors": [ "Christina Boura", "Eirini Chavli", "Maria Chlouveraki", "Konstantinos Karvounis" ], "comment": "19 pages", "categories": [ "math.RT" ], "abstract": "We prove the BMR symmetrising trace conjecture for the exceptional complex reflection groups $G_4,\\,G_5,\\,G_6,\\,G_7,\\,G_8$ using a combination of algorithms programmed in different languages (C++, SAGE, GAP3, Mathematica). Our proof depends on the choice of a suitable basis for the generic Hecke algebra associated with each group.", "revisions": [ { "version": "v1", "updated": "2018-02-21T09:43:12.000Z" } ], "analyses": { "subjects": [ "20C08", "20C40" ], "keywords": [ "bmr symmetrising trace conjecture", "exceptional complex reflection groups", "generic hecke algebra", "algorithms", "mathematica" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }