arXiv:1802.03387 [math.CO]AbstractReferencesReviewsResources
Zero-sum Analogues of van der Waerden's Theorem on Arithmetic Progressions
Published 2018-02-09Version 1
Let $r$ and $k$ be positive integers with $r \mid k$. Denote by $w_{\mathrm{\mathfrak{z}}}(k;r)$ the minimum integer such that every coloring $\chi:[1,w_{\mathrm{\mathfrak{z}}}(k;r)] \rightarrow \{0,1,\dots,r-1\}$ admits a $k$-term arithmetic progression $a,a+d,\dots,a+(k-1)d$ with $\sum_{j=0}^{k-1} \chi(a+jd) \equiv 0 \,(\mathrm{mod }\,r)$. We investigate these numbers as well as a "mixed" monochromatic/zero-sum analogue. We also present an interesting reciprocity between the van der Waerden numbers and $w_{\mathrm{\mathfrak{z}}}(k;r)$.
Related articles: Most relevant | Search more
arXiv:0706.4420 [math.CO] (Published 2007-06-29)
Bounds on Van der Waerden Numbers and Some Related Functions
arXiv:math/0506351 [math.CO] (Published 2005-06-17)
On Monochromatic Ascending Waves
Van der Waerden's Theorem on Homothetic copies of {1,1+s, 1+s+t}