{ "id": "1802.03387", "version": "v1", "published": "2018-02-09T18:50:03.000Z", "updated": "2018-02-09T18:50:03.000Z", "title": "Zero-sum Analogues of van der Waerden's Theorem on Arithmetic Progressions", "authors": [ "Aaron Robertson" ], "categories": [ "math.CO" ], "abstract": "Let $r$ and $k$ be positive integers with $r \\mid k$. Denote by $w_{\\mathrm{\\mathfrak{z}}}(k;r)$ the minimum integer such that every coloring $\\chi:[1,w_{\\mathrm{\\mathfrak{z}}}(k;r)] \\rightarrow \\{0,1,\\dots,r-1\\}$ admits a $k$-term arithmetic progression $a,a+d,\\dots,a+(k-1)d$ with $\\sum_{j=0}^{k-1} \\chi(a+jd) \\equiv 0 \\,(\\mathrm{mod }\\,r)$. We investigate these numbers as well as a \"mixed\" monochromatic/zero-sum analogue. We also present an interesting reciprocity between the van der Waerden numbers and $w_{\\mathrm{\\mathfrak{z}}}(k;r)$.", "revisions": [ { "version": "v1", "updated": "2018-02-09T18:50:03.000Z" } ], "analyses": { "subjects": [ "05D10" ], "keywords": [ "van der waerdens theorem", "zero-sum analogues", "van der waerden numbers", "term arithmetic progression", "minimum integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }