arXiv Analytics

Sign in

arXiv:1802.02752 [math.AG]AbstractReferencesReviewsResources

Degree bound of Pólya Positivstellenstaz

Ze Kang Tan

Published 2018-02-08Version 1

P\'olya's Positivstellensatz on the $1$-simplex says that if $P(x)$ is a real polynomial such that $P(x)>0$ whenever $x \ge 0$, then all the coefficients of $(1+x)^mP(x)$ are positive whenever $m$ is large. Powers-Reznick gave a complexity estimate for P\'olya's Positivstellensatz. Namely, they proved that, for such $P(x)$ of degree $d$, all the coefficients of $(1+x)^mP(x)$ are positive whenever $m > \frac{1}{2} (d^2 -d) \frac{L(P)}{\lambda(P)} - d$. where $\frac{L(P)}{\lambda(P)}$ is an invariant of $P(x)$. For $d=3$ and $d=4$ specifically, we improve Powers-Reznick's bound by showing $m > \frac{3}{2} \frac{L(P)}{\lambda(P)} - 1$ for $d=3$ and $ m > \frac{4232}{2505} \frac{L(P)}{\lambda(P)} - 1$ for $d=4$.

Related articles: Most relevant | Search more
arXiv:0805.4181 [math.AG] (Published 2008-05-27)
A degree bound for globally generated vector bundles
arXiv:1712.03573 [math.AG] (Published 2017-12-10)
Towards a quantum Lefschetz hyperplane theorem in all genera
arXiv:1402.2454 [math.AG] (Published 2014-02-11, updated 2015-02-12)
A degree bound for families of rational curves on surfaces