{ "id": "1802.02752", "version": "v1", "published": "2018-02-08T08:45:08.000Z", "updated": "2018-02-08T08:45:08.000Z", "title": "Degree bound of Pólya Positivstellenstaz", "authors": [ "Ze Kang Tan" ], "categories": [ "math.AG" ], "abstract": "P\\'olya's Positivstellensatz on the $1$-simplex says that if $P(x)$ is a real polynomial such that $P(x)>0$ whenever $x \\ge 0$, then all the coefficients of $(1+x)^mP(x)$ are positive whenever $m$ is large. Powers-Reznick gave a complexity estimate for P\\'olya's Positivstellensatz. Namely, they proved that, for such $P(x)$ of degree $d$, all the coefficients of $(1+x)^mP(x)$ are positive whenever $m > \\frac{1}{2} (d^2 -d) \\frac{L(P)}{\\lambda(P)} - d$. where $\\frac{L(P)}{\\lambda(P)}$ is an invariant of $P(x)$. For $d=3$ and $d=4$ specifically, we improve Powers-Reznick's bound by showing $m > \\frac{3}{2} \\frac{L(P)}{\\lambda(P)} - 1$ for $d=3$ and $ m > \\frac{4232}{2505} \\frac{L(P)}{\\lambda(P)} - 1$ for $d=4$.", "revisions": [ { "version": "v1", "updated": "2018-02-08T08:45:08.000Z" } ], "analyses": { "keywords": [ "pólya positivstellenstaz", "degree bound", "polyas positivstellensatz", "powers-reznicks bound", "complexity estimate" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }