arXiv Analytics

Sign in

arXiv:1802.02390 [math.PR]AbstractReferencesReviewsResources

Real zeros of random analytic functions associated with geometries of constant curvature

Hendrik Flasche, Zakhar Kabluchko

Published 2018-02-07Version 1

Let $\xi_0, \xi_1, \dots$ be i.i.d. random variables with zero mean and unit variance. We study the following four families of random analytic functions: $$ P_n(z) := \begin{cases} \sum_{k=0}^n \sqrt{\binom nk} \xi_k z^k &\text{ (spherical polynomials)}, \sum_{k=0}^\infty \sqrt{\frac{n^k}{k!}} \xi_k z^k &\text{ (flat random analytic function)}, \sum_{k=0}^\infty \sqrt{\binom {n+k-1} k} \xi_k z^k &\text{ (hyperbolic random analytic functions)}, \sum_{k=0}^n \sqrt{\frac{n^k}{k!}} \xi_k z^k &\text{ (Weyl polynomials)}. \end{cases} $$ We compute explicitly the limiting mean density of real zeroes of these random functions. More precisely, we provide a formula for $\lim_{n\to\infty} n^{-1/2} \mathbb{E}N_n[a,b]$, where $N_n[a, b]$ is the number of zeroes of $P_n$ in the interval $[a,b]$.

Comments: 26 pages, 1 figure
Categories: math.PR
Subjects: 30C15, 26C10, 60F99, 60F17, 60F05, 60G15
Related articles: Most relevant | Search more
arXiv:0906.1996 [math.PR] (Published 2009-06-10, updated 2010-07-18)
The real zeros of a random algebraic polynomial with dependent coefficients
arXiv:1706.01654 [math.PR] (Published 2017-06-06)
On the real zeros of random trigonometric polynomials with dependent coefficients
arXiv:2111.10875 [math.PR] (Published 2021-11-21, updated 2023-02-19)
The number of real zeros of elliptic polynomials