{ "id": "1802.02390", "version": "v1", "published": "2018-02-07T11:34:49.000Z", "updated": "2018-02-07T11:34:49.000Z", "title": "Real zeros of random analytic functions associated with geometries of constant curvature", "authors": [ "Hendrik Flasche", "Zakhar Kabluchko" ], "comment": "26 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "Let $\\xi_0, \\xi_1, \\dots$ be i.i.d. random variables with zero mean and unit variance. We study the following four families of random analytic functions: $$ P_n(z) := \\begin{cases} \\sum_{k=0}^n \\sqrt{\\binom nk} \\xi_k z^k &\\text{ (spherical polynomials)}, \\sum_{k=0}^\\infty \\sqrt{\\frac{n^k}{k!}} \\xi_k z^k &\\text{ (flat random analytic function)}, \\sum_{k=0}^\\infty \\sqrt{\\binom {n+k-1} k} \\xi_k z^k &\\text{ (hyperbolic random analytic functions)}, \\sum_{k=0}^n \\sqrt{\\frac{n^k}{k!}} \\xi_k z^k &\\text{ (Weyl polynomials)}. \\end{cases} $$ We compute explicitly the limiting mean density of real zeroes of these random functions. More precisely, we provide a formula for $\\lim_{n\\to\\infty} n^{-1/2} \\mathbb{E}N_n[a,b]$, where $N_n[a, b]$ is the number of zeroes of $P_n$ in the interval $[a,b]$.", "revisions": [ { "version": "v1", "updated": "2018-02-07T11:34:49.000Z" } ], "analyses": { "subjects": [ "30C15", "26C10", "60F99", "60F17", "60F05", "60G15" ], "keywords": [ "random analytic functions", "real zeros", "constant curvature", "geometries", "random functions" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }