arXiv Analytics

Sign in

arXiv:1802.02112 [math.RT]AbstractReferencesReviewsResources

Projective modules over classical Lie algebras of infinite rank in the parabolic category

Chih-Whi Chen, Ngau Lam

Published 2018-02-06Version 1

We study the truncation functors and show the existence of projective cover of each irreducible module in parabolic BGG category $\mathcal O$ over infinite rank Lie algebra of types $\mathfrak{a,b,c,d}$. Moreover, $\mathcal O$ is a Koszul category. As a consequence, the corresponding parabolic BGG category $\overline{\mathcal O}$ over infinite rank Lie superalgebra of types $\mathfrak{a,b,c,d}$ through the super duality is also a Koszul category.

Related articles: Most relevant | Search more
arXiv:1706.07839 [math.RT] (Published 2017-06-23)
Multiplicity formulas for fundamental strings of representations of classical Lie algebras
arXiv:0909.1860 [math.RT] (Published 2009-09-10, updated 2011-01-27)
Singular blocks of parabolic category O and finite W-algebras
arXiv:math/0608234 [math.RT] (Published 2006-08-10, updated 2008-03-06)
Parabolic category O, perverse sheaves on Grassmannians, Springer fibres and Khovanov homology