{ "id": "1802.02112", "version": "v1", "published": "2018-02-06T18:19:41.000Z", "updated": "2018-02-06T18:19:41.000Z", "title": "Projective modules over classical Lie algebras of infinite rank in the parabolic category", "authors": [ "Chih-Whi Chen", "Ngau Lam" ], "comment": "27 pages", "categories": [ "math.RT" ], "abstract": "We study the truncation functors and show the existence of projective cover of each irreducible module in parabolic BGG category $\\mathcal O$ over infinite rank Lie algebra of types $\\mathfrak{a,b,c,d}$. Moreover, $\\mathcal O$ is a Koszul category. As a consequence, the corresponding parabolic BGG category $\\overline{\\mathcal O}$ over infinite rank Lie superalgebra of types $\\mathfrak{a,b,c,d}$ through the super duality is also a Koszul category.", "revisions": [ { "version": "v1", "updated": "2018-02-06T18:19:41.000Z" } ], "analyses": { "subjects": [ "17B10" ], "keywords": [ "classical lie algebras", "parabolic category", "projective modules", "infinite rank lie algebra", "koszul category" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }