arXiv:1801.10431 [math.CO]AbstractReferencesReviewsResources
On the size of the set $AA+A$
Oliver Roche-Newton, Imre Z. Ruzsa, Chun-Yen Shen, Ilya D. Shkredov
Published 2018-01-31Version 1
It is established that there exists an absolute constant $c>0$ such that for any finite set $A$ of positive real numbers $$|AA+A| \gg |A|^{\frac{3}{2}+c}.$$ On the other hand, we give an explicit construction of a finite set $A \subset \mathbb R$ such that $|AA+A|=o(|A|^2)$, disproving a conjecture of Balog.
Categories: math.CO
Related articles: Most relevant | Search more
arXiv:2308.16647 [math.CO] (Published 2023-08-31)
On size Ramsey numbers for a pair of cycles
An Explicit Construction of Type A Demazure Atoms
arXiv:2106.05347 [math.CO] (Published 2021-06-09)
A note on explicit constructions of designs