arXiv Analytics

Sign in

arXiv:1801.10431 [math.CO]AbstractReferencesReviewsResources

On the size of the set $AA+A$

Oliver Roche-Newton, Imre Z. Ruzsa, Chun-Yen Shen, Ilya D. Shkredov

Published 2018-01-31Version 1

It is established that there exists an absolute constant $c>0$ such that for any finite set $A$ of positive real numbers $$|AA+A| \gg |A|^{\frac{3}{2}+c}.$$ On the other hand, we give an explicit construction of a finite set $A \subset \mathbb R$ such that $|AA+A|=o(|A|^2)$, disproving a conjecture of Balog.

Related articles: Most relevant | Search more
arXiv:2308.16647 [math.CO] (Published 2023-08-31)
On size Ramsey numbers for a pair of cycles
arXiv:0707.4267 [math.CO] (Published 2007-07-28, updated 2009-04-02)
An Explicit Construction of Type A Demazure Atoms
arXiv:2106.05347 [math.CO] (Published 2021-06-09)
A note on explicit constructions of designs