{ "id": "1801.10431", "version": "v1", "published": "2018-01-31T13:00:32.000Z", "updated": "2018-01-31T13:00:32.000Z", "title": "On the size of the set $AA+A$", "authors": [ "Oliver Roche-Newton", "Imre Z. Ruzsa", "Chun-Yen Shen", "Ilya D. Shkredov" ], "categories": [ "math.CO" ], "abstract": "It is established that there exists an absolute constant $c>0$ such that for any finite set $A$ of positive real numbers $$|AA+A| \\gg |A|^{\\frac{3}{2}+c}.$$ On the other hand, we give an explicit construction of a finite set $A \\subset \\mathbb R$ such that $|AA+A|=o(|A|^2)$, disproving a conjecture of Balog.", "revisions": [ { "version": "v1", "updated": "2018-01-31T13:00:32.000Z" } ], "analyses": { "keywords": [ "finite set", "absolute constant", "positive real numbers", "explicit construction" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }