arXiv Analytics

Sign in

arXiv:1801.09498 [math.NT]AbstractReferencesReviewsResources

On Iwasawa theory of Rubin-Stark units and narrow class groups

Youness Mazigh

Published 2018-01-29Version 1

Let $K$ be a totally real number field of degree $r$. Let $K_{\infty}$ denote the cyclotomic $\mathbb{Z}_{2}$-extension of $K$ and let $L_{\infty}$ be a finite extension of $K_{\infty}$, abelian over $K$. The goal of this paper is to compare the characteristic ideal of the $\chi$-quotient of the projective limit of the narrow class groups to the $\chi$-quotient of the projective limit of the $r$-th exterior power of totally positive units modulo a subgroup of Rubin-Stark units, for some $\overline{\mathbb{Q}_{2}}$-irreducible characters $\chi$ of $\mathrm{Gal}(L_{\infty}/K_{\infty})$.

Related articles: Most relevant | Search more
arXiv:1608.03112 [math.NT] (Published 2016-08-10)
Iwasawa theory of Rubin-Stark units and class group
arXiv:1009.3729 [math.NT] (Published 2010-09-20, updated 2015-02-17)
Seminar Notes on Open Questions in Iwasawa Theory - SNOQIT I: The $Λ[ G ]$-modules of Iwasawa theory II: Units and Kummer theory in Iwasawa extensions
arXiv:2312.04666 [math.NT] (Published 2023-12-07)
The algebra $\mathbb{Z}_\ell[[\mathbb{Z}_p^d]]$ and applications to Iwasawa theory