{ "id": "1801.09498", "version": "v1", "published": "2018-01-29T13:36:51.000Z", "updated": "2018-01-29T13:36:51.000Z", "title": "On Iwasawa theory of Rubin-Stark units and narrow class groups", "authors": [ "Youness Mazigh" ], "categories": [ "math.NT" ], "abstract": "Let $K$ be a totally real number field of degree $r$. Let $K_{\\infty}$ denote the cyclotomic $\\mathbb{Z}_{2}$-extension of $K$ and let $L_{\\infty}$ be a finite extension of $K_{\\infty}$, abelian over $K$. The goal of this paper is to compare the characteristic ideal of the $\\chi$-quotient of the projective limit of the narrow class groups to the $\\chi$-quotient of the projective limit of the $r$-th exterior power of totally positive units modulo a subgroup of Rubin-Stark units, for some $\\overline{\\mathbb{Q}_{2}}$-irreducible characters $\\chi$ of $\\mathrm{Gal}(L_{\\infty}/K_{\\infty})$.", "revisions": [ { "version": "v1", "updated": "2018-01-29T13:36:51.000Z" } ], "analyses": { "subjects": [ "11R23", "11R27", "11R29", "11R42" ], "keywords": [ "narrow class groups", "rubin-stark units", "iwasawa theory", "totally real number field", "projective limit" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }