arXiv Analytics

Sign in

arXiv:1801.03777 [math.AP]AbstractReferencesReviewsResources

On the global well-posedness of a class of 2D solutions for the Rosensweig system of ferrofluids

Stefano Scrobogna

Published 2018-01-11Version 1

We study study a class of 2D solutions of a Bloch-Torrey regularization of the Rosensweig system in the whole space, which arise when the initial data and the external magnetic field are 2D. We prove that such solutions are globally defined if the initial data is in $ H^k\left(\mathbb{R}^2\right), k\geqslant 1 $.

Related articles: Most relevant | Search more
arXiv:math/0511492 [math.AP] (Published 2005-11-19)
Global well-posedness for a NLS-KdV system on $\mathbb{T}$
arXiv:0707.2722 [math.AP] (Published 2007-07-18)
A remark on global well-posedness below L^2 for the gKdV-3 equation
arXiv:0912.4642 [math.AP] (Published 2009-12-23, updated 2010-08-03)
Global well-posedness for Schrödinger equation with derivative in $H^{1/2}(\R)$