arXiv Analytics

Sign in

arXiv:math/0511492 [math.AP]AbstractReferencesReviewsResources

Global well-posedness for a NLS-KdV system on $\mathbb{T}$

Carlos Matheus

Published 2005-11-19Version 1

We prove that the Cauchy problem of the Schr\"odinger - Korteweg - deVries (NLS-KdV) system on $\mathbb{T}$ is globally well-posed for initial data $(u_0,v_0)$ below the energy space $H^1\times H^1$. More precisely, we show that the non-resonant NLS-KdV is globally well-posed for initial data $(u_0,v_0)\in H^s(\mathbb{T})\times H^s(\mathbb{T})$ with $s>11/13$ and the resonant NLS-KdV is globally well-posed for initial data $(u_0,v_0)\in H^s(\mathbb{T})\times H^s(\mathbb{T})$ with $s>8/9$. The idea of the proof of this theorem is to apply the I-method of Colliander, Keel, Staffilani, Takaoka and Tao in order to improve the results of Arbieto, Corcho and Matheus concerning the global well-posedness of the NLS-KdV on $\mathbb{T}$ in the energy space $H^1\times H^1$.

Related articles: Most relevant | Search more
arXiv:0809.5052 [math.AP] (Published 2008-09-30, updated 2010-04-27)
Global well-posedness of the short-pulse and sine-Gordon equations in energy space
arXiv:math/0606611 [math.AP] (Published 2006-06-24)
Global well-posedness and scattering for a class of nonlinear Schrodinger equations below the energy space
arXiv:1502.06228 [math.AP] (Published 2015-02-22)
Global well-posedness in energy space for the Chern-Simons-Higgs system in temporal gauge