arXiv Analytics

Sign in

arXiv:1712.01416 [math.GT]AbstractReferencesReviewsResources

Homological eigenvalues of lifts of pseudo-Anosov mapping classes to finite covers

Asaf Hadari

Published 2017-12-04Version 1

Let $\Sigma$ be a compact orientable surface of finite type with at least one boundary component. Let $f \in \textup{Mod}(\Sigma)$ be a pseudo Anosov mapping class. We prove a conjecture of McMullen by showing that there exists a finite cover $\widetilde{\Sigma} \to \Sigma$ and a lift $\widetilde{f}$ of $f$ such that $\wt{f}_*: H_1(\wt{\Sigma}; \mathbb{Z}) \to H_1(\wt{\Sigma}; \mathbb{Z})$ has an eigenvalue off the unit circle.

Related articles: Most relevant | Search more
arXiv:1006.4409 [math.GT] (Published 2010-06-23, updated 2012-02-13)
Sequences of pseudo-Anosov mapping classes and their asymptotic behavior
arXiv:1101.2383 [math.GT] (Published 2011-01-12, updated 2011-04-14)
On pseudo-Anosov mapping classes with minimum dilatation and Lanneau-Thiffeault numbers
arXiv:1212.3197 [math.GT] (Published 2012-12-13, updated 2014-11-03)
Quotient families of mapping classes