{ "id": "1712.01416", "version": "v1", "published": "2017-12-04T23:43:15.000Z", "updated": "2017-12-04T23:43:15.000Z", "title": "Homological eigenvalues of lifts of pseudo-Anosov mapping classes to finite covers", "authors": [ "Asaf Hadari" ], "comment": "30 pages", "categories": [ "math.GT" ], "abstract": "Let $\\Sigma$ be a compact orientable surface of finite type with at least one boundary component. Let $f \\in \\textup{Mod}(\\Sigma)$ be a pseudo Anosov mapping class. We prove a conjecture of McMullen by showing that there exists a finite cover $\\widetilde{\\Sigma} \\to \\Sigma$ and a lift $\\widetilde{f}$ of $f$ such that $\\wt{f}_*: H_1(\\wt{\\Sigma}; \\mathbb{Z}) \\to H_1(\\wt{\\Sigma}; \\mathbb{Z})$ has an eigenvalue off the unit circle.", "revisions": [ { "version": "v1", "updated": "2017-12-04T23:43:15.000Z" } ], "analyses": { "keywords": [ "pseudo-anosov mapping classes", "finite cover", "homological eigenvalues", "pseudo anosov mapping class", "compact orientable surface" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }