arXiv:1711.11234 [math.RT]AbstractReferencesReviewsResources
On Categories $\mathcal{O}$ for Root-Reductive Lie Algebras
Published 2017-11-30Version 1
Let $\mathfrak{g}$ be a root-reductive Lie algebra over an algebraically closed field $\mathbb{K}$ of characteristic $0$ with a splitting Borel subalgebra $\mathfrak{b}$ containing a splitting maximal toral subalgebra $\mathfrak{h}$. We study the category $\bar{\mathcal{O}}$ consisting of all $\mathfrak{h}$-weight $\mathfrak{g}$-modules which are locally $\mathfrak{b}$-finite and have finite-dimensional $\mathfrak{h}$-weight spaces. The focus is on very special Borel subalgebras called the Dynkin Borel subalgebras. This paper serves as an initial passage to the understanding of categories $\mathcal{O}$ for infinite-dimensional root-reductive Lie algebras.
Comments: 33 pages
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:1706.05950 [math.RT] (Published 2017-06-19)
Categories O for Dynkin Borel Subalgebras of Root-Reductive Lie Algebras
arXiv:2012.01003 [math.RT] (Published 2020-12-02)
Categories $\mathcal{O}$ for Root-Reductive Lie Algebras: II. Translation Functors and Tilting Modules
arXiv:1907.08989 [math.RT] (Published 2019-07-21)
Borel subalgebras of Cartan Type Lie Algebras