{ "id": "1711.11234", "version": "v1", "published": "2017-11-30T05:21:34.000Z", "updated": "2017-11-30T05:21:34.000Z", "title": "On Categories $\\mathcal{O}$ for Root-Reductive Lie Algebras", "authors": [ "Thanasin Nampaisarn" ], "comment": "33 pages", "categories": [ "math.RT" ], "abstract": "Let $\\mathfrak{g}$ be a root-reductive Lie algebra over an algebraically closed field $\\mathbb{K}$ of characteristic $0$ with a splitting Borel subalgebra $\\mathfrak{b}$ containing a splitting maximal toral subalgebra $\\mathfrak{h}$. We study the category $\\bar{\\mathcal{O}}$ consisting of all $\\mathfrak{h}$-weight $\\mathfrak{g}$-modules which are locally $\\mathfrak{b}$-finite and have finite-dimensional $\\mathfrak{h}$-weight spaces. The focus is on very special Borel subalgebras called the Dynkin Borel subalgebras. This paper serves as an initial passage to the understanding of categories $\\mathcal{O}$ for infinite-dimensional root-reductive Lie algebras.", "revisions": [ { "version": "v1", "updated": "2017-11-30T05:21:34.000Z" } ], "analyses": { "subjects": [ "17B10", "17B22", "17B65" ], "keywords": [ "dynkin borel subalgebras", "splitting maximal toral subalgebra", "special borel subalgebras", "infinite-dimensional root-reductive lie algebras", "weight spaces" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }