arXiv Analytics

Sign in

arXiv:1711.03764 [math.AG]AbstractReferencesReviewsResources

Positivity of line bundles on general blow-ups of abelian surfaces

Sanghyeon Lee, Jaesun Shin

Published 2017-11-10Version 1

Let $(S,L_{S})$ be a polarized abelian surface, and let $M = c \cdot \pi^*L_S - \alpha \cdot \sum_{i=1}^r E_i$ be a line bundle on ${\rm Bl}_{r}(S)$, where $\pi:{\rm Bl}_{r}(S) \rightarrow S$ is the blow-up of $S$ at $r$ general points with exceptional divisors $E_{1},\dots,E_{r}$. In this paper, we provide a criterion for $k$-very ampleness of $M$. Also, we deal with the case when $S$ is an arbitrary surface of Picard number one with a numerically trivial canonical divisor.

Comments: 17 pages, Comments are welcome
Categories: math.AG
Subjects: 14C20, 14E25, 14K99, 14J25
Related articles: Most relevant | Search more
arXiv:1506.04372 [math.AG] (Published 2015-06-14)
A note on k-very ampleness of line bundles on general blow-ups of hyperelliptic surfaces
arXiv:1901.09341 [math.AG] (Published 2019-01-27)
Successive minima of line bundles
arXiv:math/0512631 [math.AG] (Published 2005-12-29)
Negative curves on very general blow-ups of P^2