{ "id": "1711.03764", "version": "v1", "published": "2017-11-10T10:40:14.000Z", "updated": "2017-11-10T10:40:14.000Z", "title": "Positivity of line bundles on general blow-ups of abelian surfaces", "authors": [ "Sanghyeon Lee", "Jaesun Shin" ], "comment": "17 pages, Comments are welcome", "categories": [ "math.AG" ], "abstract": "Let $(S,L_{S})$ be a polarized abelian surface, and let $M = c \\cdot \\pi^*L_S - \\alpha \\cdot \\sum_{i=1}^r E_i$ be a line bundle on ${\\rm Bl}_{r}(S)$, where $\\pi:{\\rm Bl}_{r}(S) \\rightarrow S$ is the blow-up of $S$ at $r$ general points with exceptional divisors $E_{1},\\dots,E_{r}$. In this paper, we provide a criterion for $k$-very ampleness of $M$. Also, we deal with the case when $S$ is an arbitrary surface of Picard number one with a numerically trivial canonical divisor.", "revisions": [ { "version": "v1", "updated": "2017-11-10T10:40:14.000Z" } ], "analyses": { "subjects": [ "14C20", "14E25", "14K99", "14J25" ], "keywords": [ "line bundle", "general blow-ups", "positivity", "general points", "numerically trivial canonical divisor" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }