arXiv Analytics

Sign in

arXiv:1710.09853 [math.FA]AbstractReferencesReviewsResources

Characterization of Invariant subspaces in the polydisc

Amit Maji, Aneesh Mundayadan, Jaydeb Sarkar, Sankar T. R

Published 2017-10-26Version 1

We give a complete characterization of invariant subspaces for $(M_{z_1}, \ldots, M_{z_n})$ on the Hardy space $H^2(\mathbb{D}^n)$ over the unit polydisc $\mathbb{D}^n$ in $\mathbb{C}^n$, $n >1$. In particular, this yields a complete set of unitary invariants for invariant subspaces for $(M_{z_1}, \ldots, M_{z_n})$ on $H^2(\mathbb{D}^n)$, $n > 1$. As a consequence, we classify a large class of $n$-tuples, $n > 1$, of commuting isometries. All of our results hold for vector-valued Hardy spaces over $\mathbb{D}^n$, $n > 1$. Our invariant subspace theorem solves the well-known open problem on characterizations of invariant subspaces of the Hardy space over the unit polydisc.

Comments: 22 pages, preliminary version, comments are welcome
Categories: math.FA, math.CV, math.OA
Related articles: Most relevant | Search more
arXiv:1310.1014 [math.FA] (Published 2013-10-03, updated 2015-02-19)
An Invariant Subspace Theorem and Invariant Subspaces of Analytic Reproducing Kernel Hilbert Spaces - II
arXiv:1309.2384 [math.FA] (Published 2013-09-10, updated 2013-09-29)
An Invariant Subspace Theorem and Invariant Subspaces of Analytic Reproducing Kernel Hilbert Spaces - I
arXiv:2406.09245 [math.FA] (Published 2024-06-13)
Two problems on submodules of $H^2(\mathbb{D}^n)$