{ "id": "1710.09853", "version": "v1", "published": "2017-10-26T18:24:56.000Z", "updated": "2017-10-26T18:24:56.000Z", "title": "Characterization of Invariant subspaces in the polydisc", "authors": [ "Amit Maji", "Aneesh Mundayadan", "Jaydeb Sarkar", "Sankar T. R" ], "comment": "22 pages, preliminary version, comments are welcome", "categories": [ "math.FA", "math.CV", "math.OA" ], "abstract": "We give a complete characterization of invariant subspaces for $(M_{z_1}, \\ldots, M_{z_n})$ on the Hardy space $H^2(\\mathbb{D}^n)$ over the unit polydisc $\\mathbb{D}^n$ in $\\mathbb{C}^n$, $n >1$. In particular, this yields a complete set of unitary invariants for invariant subspaces for $(M_{z_1}, \\ldots, M_{z_n})$ on $H^2(\\mathbb{D}^n)$, $n > 1$. As a consequence, we classify a large class of $n$-tuples, $n > 1$, of commuting isometries. All of our results hold for vector-valued Hardy spaces over $\\mathbb{D}^n$, $n > 1$. Our invariant subspace theorem solves the well-known open problem on characterizations of invariant subspaces of the Hardy space over the unit polydisc.", "revisions": [ { "version": "v1", "updated": "2017-10-26T18:24:56.000Z" } ], "analyses": { "subjects": [ "47A15", "47A13", "47A80", "30H10", "30H05", "32A10", "32A70", "46E22", "47B32" ], "keywords": [ "unit polydisc", "invariant subspace theorem", "well-known open problem", "complete characterization", "results hold" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }