arXiv Analytics

Sign in

arXiv:1710.07762 [math.AP]AbstractReferencesReviewsResources

Ill-posedness for the Hamilton-Jacobi equation in Besov spaces $B^0_{\infty,q}$

Jinlu Li, Weipeng Zhu, Zhaoyang Yin

Published 2017-10-21Version 1

In this paper, we study the Cauchy problem for the following Hamilton-Jacobi equation \bbal\bca \pa_tu-\De u=|\na u|^2,\quad t>0, \ x\in \R^d,\\ u(0,x)=u_0, \quad \quad x\in \R^d. \eca\end{align*} We show that the solution map in Besov spaces $B^0_{\infty,q}(\R^d),1\leq q\leq \infty$ is discontinuous at origin. That is, we can construct a sequence initial data $\{u^N_0\}$ satisfying $||u^N_0||_{B^0_{\infty,q}(\R^d)}\rightarrow 0, \ N\rightarrow \infty$ such that the corresponding solution $\{u^N\}$ with $u^N(0)=u^N_0$ satisfies \bbal ||u^N||_{L^\infty_T(B^0_{\infty,q}(\R^d))}\geq c_0, \qquad \forall \ T>0, \quad N\gg 1, \end{align*} with a constant $c_0>0$ independent of $N$.

Comments: 15 pages
Categories: math.AP
Subjects: 35F21
Related articles: Most relevant | Search more
arXiv:2106.00540 [math.AP] (Published 2021-06-01)
Ill-posedness for the higher dimensional Camassa-Holm equations in Besov spaces
arXiv:2104.06408 [math.AP] (Published 2021-04-13)
Ill-posedness for the Euler equations in Besov spaces
arXiv:2210.09859 [math.AP] (Published 2022-10-18)
Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces