{ "id": "1710.07762", "version": "v1", "published": "2017-10-21T06:41:02.000Z", "updated": "2017-10-21T06:41:02.000Z", "title": "Ill-posedness for the Hamilton-Jacobi equation in Besov spaces $B^0_{\\infty,q}$", "authors": [ "Jinlu Li", "Weipeng Zhu", "Zhaoyang Yin" ], "comment": "15 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we study the Cauchy problem for the following Hamilton-Jacobi equation \\bbal\\bca \\pa_tu-\\De u=|\\na u|^2,\\quad t>0, \\ x\\in \\R^d,\\\\ u(0,x)=u_0, \\quad \\quad x\\in \\R^d. \\eca\\end{align*} We show that the solution map in Besov spaces $B^0_{\\infty,q}(\\R^d),1\\leq q\\leq \\infty$ is discontinuous at origin. That is, we can construct a sequence initial data $\\{u^N_0\\}$ satisfying $||u^N_0||_{B^0_{\\infty,q}(\\R^d)}\\rightarrow 0, \\ N\\rightarrow \\infty$ such that the corresponding solution $\\{u^N\\}$ with $u^N(0)=u^N_0$ satisfies \\bbal ||u^N||_{L^\\infty_T(B^0_{\\infty,q}(\\R^d))}\\geq c_0, \\qquad \\forall \\ T>0, \\quad N\\gg 1, \\end{align*} with a constant $c_0>0$ independent of $N$.", "revisions": [ { "version": "v1", "updated": "2017-10-21T06:41:02.000Z" } ], "analyses": { "subjects": [ "35F21" ], "keywords": [ "hamilton-jacobi equation", "besov spaces", "ill-posedness", "sequence initial data", "solution map" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }