arXiv Analytics

Sign in

arXiv:1710.07101 [math.GT]AbstractReferencesReviewsResources

The Slope Conjecture for a Family of Montesinos Knots

Xudong Leng, Zhiqing Yang, Ximin Liu

Published 2017-10-19Version 1

The Slope Conjecture relates the degree of the colored Jones polynomial to the boundary slopes of a knot. We verify the Slope Conjecture and the Strong Slope Conjecture for Montesinos knots $M(\frac{1}{r},\frac{1}{s-\frac{1}{u}},\frac{1}{t} )$ with $r,u,t$ odd, $s$ even and $u\leq-1$, $r<-1<1<s,t$.

Related articles: Most relevant | Search more
arXiv:1807.00957 [math.GT] (Published 2018-07-03)
The Slope Conjecture for Montesinos knots
arXiv:1405.5088 [math.GT] (Published 2014-05-20, updated 2016-08-02)
Quadratic integer programming and the slope conjecture
arXiv:1804.05224 [math.GT] (Published 2018-04-14)
The Slope Conjecture for 3-String Montesinos Knots