{ "id": "1710.07101", "version": "v1", "published": "2017-10-19T11:49:06.000Z", "updated": "2017-10-19T11:49:06.000Z", "title": "The Slope Conjecture for a Family of Montesinos Knots", "authors": [ "Xudong Leng", "Zhiqing Yang", "Ximin Liu" ], "categories": [ "math.GT" ], "abstract": "The Slope Conjecture relates the degree of the colored Jones polynomial to the boundary slopes of a knot. We verify the Slope Conjecture and the Strong Slope Conjecture for Montesinos knots $M(\\frac{1}{r},\\frac{1}{s-\\frac{1}{u}},\\frac{1}{t} )$ with $r,u,t$ odd, $s$ even and $u\\leq-1$, $r<-1<1