arXiv Analytics

Sign in

arXiv:1710.06847 [math.RT]AbstractReferencesReviewsResources

Dirac induction for rational Cherednik algebras

Dan Ciubotaru, Marcelo De Martino

Published 2017-10-18Version 1

We introduce the local and global indices of Dirac operators for the rational Cherednik algebra $\mathsf{H}_{t,c}(G,\mathfrak{h})$, where $G$ is a complex reflection group acting on a finite-dimensional vector space $\mathfrak{h}$. We investigate precise relations between the (local) Dirac index of a simple module in the category $\mathcal{O}$ of $\mathsf{H}_{t,c}(G,\mathfrak{h})$, the graded $G$-character of the module, the Euler-Poincar\'e pairing, and the composition series polynomials for standard modules. In the global theory, we introduce integral-reflection modules for $\mathsf{H}_{t,c}(G,\mathfrak{h})$ constructed from finite-dimensional $G$-modules. We define and compute the index of a Dirac operator on the integral-reflection module and show that the index is, in a sense, independent of the parameter function $c$. The study of the kernel of these global Dirac operators leads naturally to a notion of dualised generalised Dunkl-Opdam operators.

Related articles: Most relevant | Search more
arXiv:2205.06185 [math.RT] (Published 2022-05-12)
Extensions of the rational Cherednik algebra and generalized KZ functors
arXiv:0801.4136 [math.RT] (Published 2008-01-27)
Characteristic cycles of standard modules for the rational Cherednik algebra of type Z/lZ
arXiv:1406.7502 [math.RT] (Published 2014-06-29, updated 2014-08-22)
Derived equivalences for Rational Cherednik algebras