{ "id": "1710.06847", "version": "v1", "published": "2017-10-18T17:54:20.000Z", "updated": "2017-10-18T17:54:20.000Z", "title": "Dirac induction for rational Cherednik algebras", "authors": [ "Dan Ciubotaru", "Marcelo De Martino" ], "comment": "32 pages", "categories": [ "math.RT" ], "abstract": "We introduce the local and global indices of Dirac operators for the rational Cherednik algebra $\\mathsf{H}_{t,c}(G,\\mathfrak{h})$, where $G$ is a complex reflection group acting on a finite-dimensional vector space $\\mathfrak{h}$. We investigate precise relations between the (local) Dirac index of a simple module in the category $\\mathcal{O}$ of $\\mathsf{H}_{t,c}(G,\\mathfrak{h})$, the graded $G$-character of the module, the Euler-Poincar\\'e pairing, and the composition series polynomials for standard modules. In the global theory, we introduce integral-reflection modules for $\\mathsf{H}_{t,c}(G,\\mathfrak{h})$ constructed from finite-dimensional $G$-modules. We define and compute the index of a Dirac operator on the integral-reflection module and show that the index is, in a sense, independent of the parameter function $c$. The study of the kernel of these global Dirac operators leads naturally to a notion of dualised generalised Dunkl-Opdam operators.", "revisions": [ { "version": "v1", "updated": "2017-10-18T17:54:20.000Z" } ], "analyses": { "subjects": [ "16G99", "20F55", "20C08" ], "keywords": [ "rational cherednik algebra", "dirac induction", "integral-reflection module", "global dirac operators", "finite-dimensional vector space" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }