arXiv:1710.05280 [math.AT]AbstractReferencesReviewsResources
On the module structure over the Steenrod algebra of the Dickson algebra
Published 2017-10-15Version 1
Let $p$ be an odd prime number. We study the problem of determining the module structure over the mod $p$ Steenrod algebra $\mathcal A(p)$ of the Dickson algebra $D_n$ consisting of all modular invariants of general linear group $GL(n,\mathbb F_p)$. Here $\mathbb F_p$ denotes the prime field of $p$ elements. In this paper, we give an explicit answer for $n=2$. More precisely, we explicitly compute the action of the Steenrod-Milnor operations $St^{S,R}$ on the generators of $D_n$ for $n=2$ and for either $S=\emptyset, R=(i)$ or $S=(s), R=(i)$ with $s,i$ arbitrary nonnegative integers.
Comments: 10 pages
Journal: Quynhon University Journal of Science, Vol. 1, No. 3 (2007), 5-15
Categories: math.AT
Keywords: steenrod algebra, dickson algebra, module structure, odd prime number, general linear group
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1905.00819 [math.AT] (Published 2019-05-02)
The cohomology of the Steenrod algebra and the mod $p$ Lannes-Zarati homomorphism
arXiv:1710.05326 [math.AT] (Published 2017-10-15)
On the action of the Steenrod-Milnor operations on the invariants of the general linear groups
arXiv:0903.5003 [math.AT] (Published 2009-03-28)
Young tableaux and the Steenrod algebra