{ "id": "1710.05280", "version": "v1", "published": "2017-10-15T06:16:37.000Z", "updated": "2017-10-15T06:16:37.000Z", "title": "On the module structure over the Steenrod algebra of the Dickson algebra", "authors": [ "Nguyen Sum" ], "comment": "10 pages", "journal": "Quynhon University Journal of Science, Vol. 1, No. 3 (2007), 5-15", "categories": [ "math.AT" ], "abstract": "Let $p$ be an odd prime number. We study the problem of determining the module structure over the mod $p$ Steenrod algebra $\\mathcal A(p)$ of the Dickson algebra $D_n$ consisting of all modular invariants of general linear group $GL(n,\\mathbb F_p)$. Here $\\mathbb F_p$ denotes the prime field of $p$ elements. In this paper, we give an explicit answer for $n=2$. More precisely, we explicitly compute the action of the Steenrod-Milnor operations $St^{S,R}$ on the generators of $D_n$ for $n=2$ and for either $S=\\emptyset, R=(i)$ or $S=(s), R=(i)$ with $s,i$ arbitrary nonnegative integers.", "revisions": [ { "version": "v1", "updated": "2017-10-15T06:16:37.000Z" } ], "analyses": { "subjects": [ "55S10", "55P47", "55Q45", "55T15" ], "keywords": [ "steenrod algebra", "dickson algebra", "module structure", "odd prime number", "general linear group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }